IMO 2019/4

Find all couples of integers (k,n) which satisfy

k!=(2^n-1)(2^n-2)(2^n-4)...(2^n-2^{n-1})

The Idea

We notice that (1,1) , (3,2) work and we claim that other solutions don’t exist, so we want to get an upper and lower bound for n.

Proof

Now let v_p(x) be the greatest exponent of prime p in the scomposition of x, we notice that v_2(RHS)=\frac{n(n-1)}{2} and v_2(RHS)=\sum_{i=1}^{\infty}\lfloor{\frac{k}{2^i}}\rfloor < \sum_{i=1}^{\infty}\frac{k}{2^i}=k.

Hence, k>\frac{n(n-1)}{2}

Now we see that v_3(LHS)=\sum_{i=1}^{\infty}\lfloor{\frac{k}{3^i}}\rfloor>\lfloor\frac{k}{3} \geq \frac{k}{3}-1 while for the right hand side, we see that all the factors divisible by 3 are the ones which (once all factor 2 are removed) can be written in the form 4^h-1. So (by the Lifting The Exponent Lemma) v_3(RHS)= \sum_{h=1}^{\lfloor\frac{n}{2}\rfloor} v_3(h)+1=v_3(\lfloor\frac{n}{2}\rfloor!)+\frac{n}{2}. Now similarly as before v_3(\lfloor\frac{n}{2}\rfloor!) = \sum_{i=1}^{\infty}\lfloor\frac{\lfloor\frac{n}{2}\rfloor}{3^i}\rfloor <\sum_{n=1}^{\infty}\frac{\frac{n}{2}}{3^i}= \frac{n}{4}. So v_3(RHS)=\frac{3n}{4}, hence \frac{3n}{4}>\frac{k}{3}-1 or \frac{9n}{4}+3>k.

In the end, we get \frac{9n}{4}+3>k>\frac{n(n-1)}{2} or

2n^2-11n-12<0

from which 0<n<\frac{11+\sqrt{217}}{4} \approx 6.43.

Now we just have to try out the cases with n \leq 6 to find our two unique solutions.

(1,1), (3,2)

Scroll to top